Enhancing alcohol production with enzymes
Efficient alcohol production

Let Novozymes’ enzymes bring your alcohol production more savings and increased efficiency. Enzymes allow you to benefit from the non-pressure cooking (NPC) process, which has maximum operating temperatures between 60°C and 95°C.

The high temperatures (150°C) and high energy consumption associated with standard alcohol production are now a thing of the past. The NPC process cost-effectively breaks down and gelatinises the starch of grain, potatoes or other raw materials, preparing them for subsequent enzymatic breakdown into fermentable sugars.

Look at all the benefits the NPC process gives you…

Energy savings
Avoid heating the mash to high temperatures, saving you considerable energy and money.

Infrastructure savings
Avoid installing expensive pressure-cooking vessels when renovating or constructing production plants.

Yield increase
Prevent the thermal breakdown of sugars and the subsequent formation of unwanted Maillard products.

Quality improvement
Improve the organoleptic properties of the distillates with the lower temperatures of the NPC process.

The NPC process…

- grinding or milling the raw material
- slurrying the raw material in water
- adding a liquefying enzyme
- heating the slurry
- observing a holding period
- cooling
- adding saccharifying enzyme
- cooling
- adding yeast
- fermenting
- distilling.
A complete solution suite
Novozymes has a complete suite of enzymes to facilitate all phases of the non-pressure cooking process!

Termamyl SC
Thermo-stable bacterial alpha-amylase
Declared activity: 120 KNU/g

Termamyl 120 L
Thermo-stable bacterial alpha-amylase
Declared activity: 120 KNU/g

BAN 240 L / 480 L
Bacterial alpha-amylase
Declared activity:
BAN 240 L: 240 KNU/g
BAN 480 L: 480 KNU/g

Fungamyl 800 L
Fungal alpha-amylase
Declared activity: 800 FAU/g

SAN Super 240 L / 360 L
Amyloglucosidase with a balanced content of acid alpha-amylase and protease
Declared activity:
SAN Super 240 L: 240 AGU/ml
SAN Super 360 L: 360 AGU/ml

SAN Extra L
Amyloglucosidase with a balanced content of acid alpha-amylase
Declared activity: 400 AGU/g

Neutrase 0.8 L
Neutral bacterial protease
Declared activity: 0.8 AU/g

Alcalase 2.4 L
Bacterial protease
Declared activity: 2.4 AU/g

Viscozyme L
Fungal mixed carbohydrase: beta-glucanase, cellulase, etc.
Declared activity: 100 FBG/g

Shearzyme 500 L
Endo-xylanase
Declared activity: 500 FXU/g

Celluclast 1.5 L
Cellulase
Declared activity: 700 EGU/g

Dosage
Some of the products are available in various strengths and the enzyme dosage needs to be adjusted accordingly.

<table>
<thead>
<tr>
<th>Process step</th>
<th>Product</th>
<th>Temperature (°C)</th>
<th>pH</th>
<th>Ca++ (ppm)</th>
<th>Dosage range (per t starch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquefaction</td>
<td>Termamyl® SC</td>
<td>85-95</td>
<td>5-6</td>
<td>5</td>
<td>100-350 g</td>
</tr>
<tr>
<td></td>
<td>Termamyl 120 L</td>
<td>85-95</td>
<td>6-6.5</td>
<td>50</td>
<td>200-500 g</td>
</tr>
<tr>
<td></td>
<td>BAN 240 L</td>
<td>70-80</td>
<td>6-6.5</td>
<td>150</td>
<td>200-500 g</td>
</tr>
<tr>
<td></td>
<td>BAN 480 L</td>
<td>60-65</td>
<td>5-6</td>
<td>150</td>
<td>100-250 g</td>
</tr>
<tr>
<td></td>
<td>Fungamyl® 800 L</td>
<td></td>
<td></td>
<td>50</td>
<td>100-150 g</td>
</tr>
<tr>
<td>Saccharification</td>
<td>SAN Super 240 L</td>
<td>50-60</td>
<td>5-6</td>
<td>-</td>
<td>1000-1200 ml</td>
</tr>
<tr>
<td></td>
<td>SAN Super 360 L</td>
<td>50-60</td>
<td>5-6</td>
<td>-</td>
<td>600-800 ml</td>
</tr>
<tr>
<td></td>
<td>SAN Extra L</td>
<td>30-70</td>
<td>3-6</td>
<td>-</td>
<td>500-700 g</td>
</tr>
<tr>
<td>Fermentation enhancement</td>
<td>Neutrase® 0.8 L</td>
<td>40-45</td>
<td>5.5-6</td>
<td>-</td>
<td>100-200 g</td>
</tr>
<tr>
<td></td>
<td>Alcalase® 2.4 L</td>
<td>40-60</td>
<td>5-7</td>
<td>-</td>
<td>20-50 g</td>
</tr>
<tr>
<td>Viscosity reduction, HGF (high gravity fermentation)</td>
<td>Viscozyme® L</td>
<td>45-65</td>
<td>4-6</td>
<td>-</td>
<td>150-300 g</td>
</tr>
<tr>
<td></td>
<td>Shearzyme® 500 L</td>
<td>45-65</td>
<td>4-6</td>
<td>-</td>
<td>20-50 g</td>
</tr>
</tbody>
</table>
The following table provides an overview of the non-pressure cooking process phases and how to apply Novozymes’ enzymes for optimum results. We have also given some helpful tips (see A to M and the Useful tips section) to help you even more.

<table>
<thead>
<tr>
<th>Raw material</th>
<th>Maize (corn), rice, sorghum</th>
<th>Wheat, barley, rye, oats</th>
</tr>
</thead>
</table>
| **Equipment** | • Mill, e.g. hammer mill with 1-2 mm sieve
• Mash tun with heating, cooling and stirring
• Saccharification tank with cooling equipment, fermenters | |
| **Mill** | Mill grain | |
| **Water** | Slurry the milled grain into water at max. 50°C:
300-350 l/100 kg grain | |
| **pH/Ca** | Check the pH; if below 5.6, adjust to pH 6 using lime or Termamyl SC | |
| **Enzyme** | Add:
Termamyl 120 L 200-500 g/t starch
or Termamyl SC 150-450 g/t starch | Add:
Fungamyl® 800 L 100-150 g/t starch
or BAN 240 L 200-500 g/t starch
or BAN 480 L 100-250 g/t starch
Add:
Viscozyme® L 100-200 g/t mash
or Shearzyme® 500 L 50-100 g/t mash | |
| **Temperature** | Heat to 85-95°C | Heat to 60-65°C |
| **Hold** | Hold this temperature for 30-60 minutes | |
| **Cool** | Cool to 55°C | Cool to 55°C using a cooling spiral,
by adding cold water or a combination of the two |
| **pH** | Check the pH; if above 6, adjust to 5.5 with sulphuric acid | |
| **Enzyme** | Add:
SAN Super 240 L 1.0 l/t starch, SAN Super 360 L 0.7 l/t starch
or SAN Extra L 0.7 kg/t starch | |
| **Cool** | Cool to 30°C after holding for 30-120 minutes | |
| **Yeast** | Add:
Inoculum yeast mash 8-10% or baker’s yeast 1 kg/m³ mash | |
<p>| Cool | Cool to setting temperature | |
| Ferment | Transfer to fermenter and ferment for 48-72 hours | |</p>
<table>
<thead>
<tr>
<th>Raw material</th>
<th>Potatoes, manioc, cassava & other tubers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td>Recirculation</td>
</tr>
<tr>
<td>Equipment</td>
<td>• Hammer mill, 2 mm sieve</td>
</tr>
<tr>
<td></td>
<td>• Tank with recirculation pump, pipes</td>
</tr>
<tr>
<td></td>
<td>and heating equipment</td>
</tr>
<tr>
<td></td>
<td>• Mash tun with stirring and cooling</td>
</tr>
<tr>
<td></td>
<td>• Saccharification tank with</td>
</tr>
<tr>
<td></td>
<td>cooling equipment</td>
</tr>
<tr>
<td></td>
<td>• Fermenters</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>Fill hot water (85-95°C) into circulation tank, approx. 5-10% of batch volume. Same amount of water and same high temperature</td>
</tr>
<tr>
<td>Start mill and pump</td>
<td>Start recirculation pump</td>
</tr>
<tr>
<td></td>
<td>Start milling potatoes into tank</td>
</tr>
<tr>
<td>Enzyme</td>
<td>When 10% of potatoes are milled, add Termamyl® SC 150-300 g/t starch to the tank</td>
</tr>
<tr>
<td>Start jet</td>
<td>Pump milled potatoes through steam jet into mash tun, heating them to 85-95°C. Start stirrer in mash tun</td>
</tr>
<tr>
<td>pH</td>
<td>pH should be 5.2-5.8; if necessary, adjust by adding lime solution to the mill: approx. 0.5 kg lime/t potatoes</td>
</tr>
<tr>
<td>Temperature</td>
<td>Hold temperature at 85-95°C by steam injection</td>
</tr>
<tr>
<td>Hold</td>
<td>Continue recirculation for 15-30 minutes after milling is completed. Transfer batch to mash tun</td>
</tr>
<tr>
<td>Cool</td>
<td>Cool to 55°C using a cooling spiral, by adding cold water or a combination of the two</td>
</tr>
<tr>
<td>pH</td>
<td>Check the pH; if above 6, adjust to 5.5 with sulphuric acid</td>
</tr>
<tr>
<td>Enzyme</td>
<td>Add SAN Extra L 0.7 l/t starch, SAN Super 240 L 1 l/t starch or SAN Super 360 L 0.7 l/t starch</td>
</tr>
<tr>
<td>Cool</td>
<td>Cool to 30°C after holding for 30-120 minutes at 55°C</td>
</tr>
<tr>
<td>Yeast</td>
<td>Add: Inoculum yeast mash 8-10% or baker’s yeast 1 kg/m³ mash</td>
</tr>
<tr>
<td>Cool</td>
<td>Cool to setting temperature</td>
</tr>
<tr>
<td>Ferment</td>
<td>Transfer to fermenter and ferment for 48-72 hours</td>
</tr>
<tr>
<td></td>
<td>pH 5.0</td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>Termamyl® SC</td>
<td>80°C</td>
</tr>
<tr>
<td>Termamyl 120 L</td>
<td>70°C</td>
</tr>
<tr>
<td>BAN</td>
<td>60°C</td>
</tr>
<tr>
<td>Fungamyl®</td>
<td>60°C</td>
</tr>
</tbody>
</table>
Useful tips

The processes described will work in the vast majority of cases. The following tips may, however, help to optimise the process or solve any problems that may arise. (Letters A to N refer to pages 4 and 5)

A The stability and the performance of the liquefying enzyme are influenced by:
- pH
- temperature
- calcium concentration.

The closer to the optimum conditions given above, the lower the required enzyme dosage. Guidelines for the relationship between pH and highest advisable temperature are as follows:

With Termamyl 120 L or BAN, it is always advisable to make sure that the pH is within the range 5.6-6.5. This can be achieved by adding lime. This will also add calcium, which stabilises the amylases.

For grain and when using hard water, both pH and calcium concentration will normally be adequate. If soft water (<5° dH, corresponding to 35 ppm Ca) is used, the addition of lime – Ca(OH)$_2$ – is recommended. A starting dosage of 0.5 kilograms per ton of raw material is suggested. It may then be adjusted according to experience.

For potatoes, the addition of lime is often necessary to adjust pH and calcium level (0.5 kilograms per ton of raw material).

When using new Termamyl SC, Ca adjustment is not needed and the optimum pH range is 5.2–5.8.

B It is advisable to dilute the enzyme with cold water before addition, e.g. 1 litres of enzyme with 10 litres of water.

C A reduction in the fermentation time of 10-20 hours may be achieved by adding Fungamyl 800 L (50-100 g/t starch) together with SAN Super (not necessary when Fungamyl is used as the liquefaction enzyme) after cooling to 55°C.

The yeast dosage must be increased by at least 25% and the fermentation temperature increased by 2°C. (For baker’s yeast, the maximum temperature is 35°C; for propagated yeast, the maximum temperature is 38°C). Another option is to use Alcalase 2.4 L at 20-50 g/t starch.

D In 24 hour yeast propagations, add 10 ml SAN Super 240 L or 7 ml SAN Super 360 L to each 100 litres of yeast mash.

E In the event of viscosity problems with mash and stillage, we recommend adding the broad carbohydrase Viscozyme L at 100-200 g/t mash or Shearzyme 500 L at 50-100 g/t mash during cooling at around 55°C. Ask for our latest product developments and recommendations.

F Alternatively, mill the grain with warm water (50°C) or cold water (20°C). The liquefying enzyme can then be added to the mill advantageously.

G A two-tank system might be advantageous. The slurry could be prepared in one tank while the previous batch is processed in the other tank. The capacity of the unit would thus be increased.

H Alternatively, prepare the slurry at 15°C the day before and keep it overnight without heating.

I At 60-65°C, Fungamyl is recommended, in which case pH 5.0-5.3 is sufficient. If 70-75°C is considered necessary, BAN must be used.

J For viscosity reduction, we recommend using Viscozyme L or Shearzyme in combination with BAN, Fungamyl or Termamyl. Ask for our latest product developments and recommendations.

K The amount of water depends on the starch content of the potatoes. The lower the starch content, the less water is needed.

L Problems with deposits on heat surfaces can usually be solved by adding Neutrase 0.8 L at 50-150 g/t starch or Alcalase 2.4 L at 25-75 g/t starch. This will often also improve fermentation.

M The mill, pump and jet are started in close succession.
Novozymes - Unlocking the magic of nature

Novozymes is the biotech-based world leader in enzymes and microorganisms. Using nature’s own technologies, we continuously expand the frontiers of biological solutions to improve industrial performance everywhere.

Main sales offices:

Africa, Sub-Sahara:
Sandon, South Africa
Tel. +27 11 444 8124

Australia & New Zealand:
Sydney, Australia
Tel. +61 2 9630 8466

Central & Western Europe:
Paris, France
Tel. +33 146140746

China:
Beijing, China
Tel. +86 10 6298 7888

Eastern Europe:
Vienna, Austria
Tel. +43 1505 4757

Indian Subcontinent:
Bangalore, India
Tel. +91 280 8418275

Japan:
Tokyo, Japan
Tel. +81 432 966 767

Korea:
Seoul, Korea
Tel. +82 2 795-0882

Mexico, Central America & Caribbean:
Mexico City, Mexico
Tel. +52 55 5394 8778

Middle East & Northern Africa:
Athens, Greece
Tel. +30 2 10 96 70 451

North America:
Franklinton, North Carolina
Tel. +1 919 494 3000

Russia & Belarus:
Moscow, Russia
Tel. +7 985 234 44 01

South America:
Araucaria, Parana, Brazil
Tel. +55 41 641 1000

South-East Asia:
Kuala Lumpur, Malaysia
Tel. +60 3 8996 1588

Laws, regulations and third party rights may prevent customers from importing, processing, applying and/or reselling certain products in a given manner. It is the responsibility of the customer that their specific use of products from Novozymes does not infringe relevant laws and regulations and, furthermore, does not infringe patents or other third party rights. The contents of this document are subject to change without further notice.